322513(22)

B. E. (Fifth Semester) Examination, April-May 2021

(CSE Engg. Branch)

OPERATING SYSTEM

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of every question is compulsory.

Attempt any two from (b), (c) and (d). Assume if any data is missing.

Unit-I

- 1. (a) Write down the difference between multitasking and multiprograming operating system.
 - (b) Briefly explain objectives and functions of operating system.

2

(c) Explain the real time operating system with its advantages and disadvantages.

7

7

2

7

(d) Explain Various System Components of OS.

Unit-II

- 2. (a) What is PCB?
 - (b) Explain Short Term, Long Term and Medium Term Scheduluer.
 - (c) Write down the different CPU scheduling criterias.
 - (d) Consider the following set of processes, with the length of the CPU-burst time given in milliseconds: 7

rocess	Burst time
	24
P_2	The 3 rm or transfer
P_3	3

The process are assumed to have arrived in the order P_1 , P_2 , P_3 all at time 0 (zero):

(i) Draw a Gantt-chart illustrating the execution of these processes using FCFS.

- (ii) Compute waiting times for the processes and average waiting time.
 - (iii) What if the processes arrive in the order P_2 , P_3 , P_1

Unit-III

- **3.** (a) Write the conditions for a deadlock.
 - (b) What is deadlok? Give the various methods to avoid the deadlock.
 - (c) Write down the two methods for handling deadlocks.
 - (d) Consider the following snapshot of a system:

(d.) Fer the partition of 100 TC 500 K; 200 IC 300 K;

Process	Allocation				Max			Available					
	A	В	С	D	A	В	C	D	A	В	C	D	
Po												0	
P_1													
P_2	1	3	5		2								
P_3													
Paring	0	0	Ti.	4	0	6	5	6					

7

	Using Banker's algorithm, answer the following	
	questions:	
	(i) What is the content of matrix NEED?	
	(ii) Is the system in a safe state?	
	(iii) If a request from process P_1 arrives for $(0, 4, 2, 0)$	
	can the request be granted immediately?	
	tuosanat shantan zuoin Unit-IV	5
4.	(a) Define logical and physical address space.	2
	(b) Define Fragmentation. Explain Internal and External	
	Fragmentation.	7
	(c) Explain demand paging with an example.	7
	(d) For the partitions of 100 K, 500 K, 200 K, 300 K and 600 K (in-order)	
	Place the processes of size 212 K, 417 K, 112 K,	
	426 K (in-order) according to best fit algorithm,	
	200 K is reserve for OS. Also make PDT?	7
	I Init-V	

[4]

(b) Explain buffering mechanism with its type.			
(c) Wri	te a short notes on :	7	
(i)	Single-level Directory		
(ii)	Tree-level Directory		
(d) Explain any one file allocation method with proper			
exa	mple.	7	

[5]

5. (a) What is file? Write down the different file attributes. 2